3.496 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4}}{x^9} \, dx\)

Optimal. Leaf size=400 \[ -\frac{b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{b} d-21 \sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 a^{5/4} \sqrt{a+b x^4}}-\frac{2 b^{5/4} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 a^{3/4} \sqrt{a+b x^4}}+\frac{b^2 c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{16 a^{3/2}}+\frac{2 b^{3/2} f x \sqrt{a+b x^4}}{5 a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{1}{840} \sqrt{a+b x^4} \left (\frac{105 c}{x^8}+\frac{120 d}{x^7}+\frac{140 e}{x^6}+\frac{168 f}{x^5}\right )-\frac{b c \sqrt{a+b x^4}}{16 a x^4}-\frac{2 b d \sqrt{a+b x^4}}{21 a x^3}-\frac{b e \sqrt{a+b x^4}}{6 a x^2}-\frac{2 b f \sqrt{a+b x^4}}{5 a x} \]

[Out]

-(((105*c)/x^8 + (120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*Sqrt[a + b*x^4])/840 -
 (b*c*Sqrt[a + b*x^4])/(16*a*x^4) - (2*b*d*Sqrt[a + b*x^4])/(21*a*x^3) - (b*e*Sq
rt[a + b*x^4])/(6*a*x^2) - (2*b*f*Sqrt[a + b*x^4])/(5*a*x) + (2*b^(3/2)*f*x*Sqrt
[a + b*x^4])/(5*a*(Sqrt[a] + Sqrt[b]*x^2)) + (b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt
[a]])/(16*a^(3/2)) - (2*b^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt
[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)*
Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*d - 21*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1
/4)], 1/2])/(105*a^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 1.02869, antiderivative size = 400, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 13, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.433 \[ -\frac{b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{b} d-21 \sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 a^{5/4} \sqrt{a+b x^4}}-\frac{2 b^{5/4} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 a^{3/4} \sqrt{a+b x^4}}+\frac{b^2 c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{16 a^{3/2}}+\frac{2 b^{3/2} f x \sqrt{a+b x^4}}{5 a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{1}{840} \sqrt{a+b x^4} \left (\frac{105 c}{x^8}+\frac{120 d}{x^7}+\frac{140 e}{x^6}+\frac{168 f}{x^5}\right )-\frac{b c \sqrt{a+b x^4}}{16 a x^4}-\frac{2 b d \sqrt{a+b x^4}}{21 a x^3}-\frac{b e \sqrt{a+b x^4}}{6 a x^2}-\frac{2 b f \sqrt{a+b x^4}}{5 a x} \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^9,x]

[Out]

-(((105*c)/x^8 + (120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*Sqrt[a + b*x^4])/840 -
 (b*c*Sqrt[a + b*x^4])/(16*a*x^4) - (2*b*d*Sqrt[a + b*x^4])/(21*a*x^3) - (b*e*Sq
rt[a + b*x^4])/(6*a*x^2) - (2*b*f*Sqrt[a + b*x^4])/(5*a*x) + (2*b^(3/2)*f*x*Sqrt
[a + b*x^4])/(5*a*(Sqrt[a] + Sqrt[b]*x^2)) + (b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt
[a]])/(16*a^(3/2)) - (2*b^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt
[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)*
Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*d - 21*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1
/4)], 1/2])/(105*a^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**9,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 0.93819, size = 293, normalized size = 0.73 \[ \frac{-32 \sqrt{a} b^{3/2} x^8 \sqrt{\frac{b x^4}{a}+1} \left (21 \sqrt{a} f-5 i \sqrt{b} d\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+672 a b^{3/2} f x^8 \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (105 b^2 c x^8 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )-\sqrt{a} \left (a+b x^4\right ) \left (a (210 c+8 x (30 d+7 x (5 e+6 f x)))+b x^4 \left (105 c+8 x \left (20 d+35 e x+84 f x^2\right )\right )\right )\right )}{1680 a^{3/2} x^8 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^9,x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(-(Sqrt[a]*(a + b*x^4)*(b*x^4*(105*c + 8*x*(20*d + 35
*e*x + 84*f*x^2)) + a*(210*c + 8*x*(30*d + 7*x*(5*e + 6*f*x))))) + 105*b^2*c*x^8
*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) + 672*a*b^(3/2)*f*x^8*Sqrt[1
+ (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 32*Sqrt[a]*
b^(3/2)*((-5*I)*Sqrt[b]*d + 21*Sqrt[a]*f)*x^8*Sqrt[1 + (b*x^4)/a]*EllipticF[I*Ar
cSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(1680*a^(3/2)*Sqrt[(I*Sqrt[b])/Sqrt[a]]
*x^8*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.023, size = 408, normalized size = 1. \[ -{\frac{c}{8\,a{x}^{8}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}+{\frac{bc}{16\,{a}^{2}{x}^{4}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}+{\frac{{b}^{2}c}{16}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ){a}^{-{\frac{3}{2}}}}-{\frac{{b}^{2}c}{16\,{a}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{d}{7\,{x}^{7}}\sqrt{b{x}^{4}+a}}-{\frac{2\,bd}{21\,a{x}^{3}}\sqrt{b{x}^{4}+a}}-{\frac{2\,{b}^{2}d}{21\,a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{e}{6\,a{x}^{6}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}-{\frac{f}{5\,{x}^{5}}\sqrt{b{x}^{4}+a}}-{\frac{2\,fb}{5\,ax}\sqrt{b{x}^{4}+a}}+{{\frac{2\,i}{5}}f{b}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{2\,i}{5}}f{b}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^9,x)

[Out]

-1/8*c/a/x^8*(b*x^4+a)^(3/2)+1/16*c*b/a^2/x^4*(b*x^4+a)^(3/2)+1/16*c*b^2/a^(3/2)
*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)-1/16*c*b^2/a^2*(b*x^4+a)^(1/2)-1/7*d/x^
7*(b*x^4+a)^(1/2)-2/21*b*d*(b*x^4+a)^(1/2)/a/x^3-2/21*d/a*b^2/(I/a^(1/2)*b^(1/2)
)^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a
)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/6*e/a/x^6*(b*x^4+a)^(3/2)-1/5
*f/x^5*(b*x^4+a)^(1/2)-2/5*b*f*(b*x^4+a)^(1/2)/a/x+2/5*I*f/a^(1/2)*b^(3/2)/(I/a^
(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(
1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-2/5*I*f/a^(1/2)*b^
(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(
1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^9, x)

_______________________________________________________________________________________

Sympy [A]  time = 12.5247, size = 246, normalized size = 0.62 \[ \frac{\sqrt{a} d \Gamma \left (- \frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{7}{4}, - \frac{1}{2} \\ - \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac{3}{4}\right )} + \frac{\sqrt{a} f \Gamma \left (- \frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{4}, - \frac{1}{2} \\ - \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac{1}{4}\right )} - \frac{a c}{8 \sqrt{b} x^{10} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{3 \sqrt{b} c}{16 x^{6} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{\sqrt{b} e \sqrt{\frac{a}{b x^{4}} + 1}}{6 x^{4}} - \frac{b^{\frac{3}{2}} c}{16 a x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{b^{\frac{3}{2}} e \sqrt{\frac{a}{b x^{4}} + 1}}{6 a} + \frac{b^{2} c \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{16 a^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**9,x)

[Out]

sqrt(a)*d*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4*
x**7*gamma(-3/4)) + sqrt(a)*f*gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**4*ex
p_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) - a*c/(8*sqrt(b)*x**10*sqrt(a/(b*x**4) + 1
)) - 3*sqrt(b)*c/(16*x**6*sqrt(a/(b*x**4) + 1)) - sqrt(b)*e*sqrt(a/(b*x**4) + 1)
/(6*x**4) - b**(3/2)*c/(16*a*x**2*sqrt(a/(b*x**4) + 1)) - b**(3/2)*e*sqrt(a/(b*x
**4) + 1)/(6*a) + b**2*c*asinh(sqrt(a)/(sqrt(b)*x**2))/(16*a**(3/2))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^9, x)